物联网

石油和大数据相结合的理由是什么

发布时间:2019-08-16 12:07:03 所属栏目:物联网 阅读:

本期聚焦石油与大数据。伴随着数字化浪潮,能源和资源得以智能化分配,效率空前提升,能耗成本也大幅下降,数字化为能源革命赋能,已逐渐成为共识。石油行业油气上游部门是由海量数据驱动的,数据量呈指数上升趋势。

能源行业的全面自动化和数字化热潮此时方兴未艾,这是能源数字化的“红”。“智能”系统日益广泛的应用也使我们产生了一种错觉,即所有的数字问题都可以通过数字方案来解决。然而,数字化时代全面来临,黑客也随之变得越来越大胆和有“创意”。与此同时,网络安全工作的难度却日渐增加。这是能源数字化的“黑”。

技术部门需要同时应对大量难以想象的结构化数据和非结构化数据,他们必须获取并管理比以往更多的数据,并从这些数据中分析油田的各种规律。这些引领行业的大公司具体有哪些举措或实践?本版进行了梳理和解读。

石油和大数据相结合的理由是什么

石油公司与大数据

大型石油公司在运用新技术的时候,更多考虑技术带来的收益和见效的时间,所以投资规模适中、见效明显、收益高的技术往往受到青睐。

石油公司主要利用大数据技术处理设备的预测性维护数据和地震数据。值得关注的是,石油公司和互联网公司(如亚马逊和谷歌等)的合作越来越多,这种跨界联姻带来的预期也值得期待。

壳牌(Shell)

壳牌与惠普合作,在油田和炼厂布设了大量传感器和光纤电缆,并将海量数据传输到由亚马逊维护的私有云。通过数据仓库的搭建及大量数据分析方法的运用,壳牌对油藏情况有了更精准的把握,来自任何一个油田的数据都可以和远在万里之外的成千上万的油田数据进行对比,以确认最佳的钻井靶点。

新一代的分析技术正把海量数据转化为合理的勘探决策、高质量的油井、较低的成本和可接受的环境影响。他们运用SAS(SAS是全球最大的软件公司之一,是全球商业智能和分析软件与服务领袖,经营范围是商业智能和分析软件及解决方案、智能领域专业咨询服务、基于SAS解决方案的专业培训和技术支持等)的预测性资产维护软件延长设备寿命和运行时间,由此带来的油气增量会给公司带来数千万美元的效益。大数据已深入设备运行的每个方面,在此基础上的数据分析技术帮助壳牌持续保持领先。

SAS消除了壳牌设备运行业务流程中的不确定性。通过分析大量实时数据,壳牌提高了设备流程和资产效率,保持了良好的性能和可靠性。当SAS发出预警信号时,现场工程师可以快速诊断,并防止进一步出现更严重的问题。

壳牌的工程师正利用这些设备监控大数据来提高公司最新平台Perdido Spar的性能。在1万英尺的水下,一条面积相当于美国休斯敦的海床可生产石油和天然气13万桶油当量/日,借助SAS的大数据技术,壳牌可以在这里大显身手。

除了勘探,壳牌还利用大数据来优化石油和天然气的运输、提炼和销售。

炼厂需要建在尽可能接近最终用途的地方,尽量降低运输成本。通过海量数据结合复杂的算法,考虑生产燃料的成本和各种数据,可以确定每种产品的需求和资源分配形式,以达到炼厂最优化生产的目的。

雪佛龙(Chevron)

一口油井的一根光纤电缆每天可以产生超过1TB的数据,雪佛龙有数千口油井,多年来一直在收集和分析数据。在与微软达成协议使用其高度分布式架构的云服务后,雪佛龙的数据收集和分析系统正在升级。

有了微软Azure的帮助,雪佛龙运用地震数据预测和建立油田地质模型的工作变得更简单和准确。

此外,油井中的传感器收集性能、温度、压力和设备健康数据,钻井船和生产设施配备了数千个传感器,生成更多数据。Azure物联网中心不仅将继续收集所有这些数据,而且将帮助部署、管理和保护这些设备。

有了这样庞大的物联网系统,加上机器学习技术,系统就可以给工程师更多指导,让他们确切知道要去哪里和要做什么。机器学习技术还可以比人类工程师更快、更一致地处理地震数据,并帮助建立地质模型,帮助工程师决定在哪里钻井,以及使用什么钻井技术。

借助微软提供的大数据技术,雪佛龙提升了墨西哥湾部分油田的钻井效率逾20%,优化了勘探开发工作,大幅提高了油气田发现的数量和质量。

沙特阿美(Saudi Aramco)

作为石油行业当之无愧的“巨无霸”,沙特阿美在技术上也必须是舍得下血本投入的。考虑到沙特阿美的体量,即使是很小比例的采收率和生产效率的提高,对公司长期发展也有明显好处。2017年以来,该公司采取了一系列措施,最大限度提高石油采收率,其中大数据技术起到至关重要的作用。