物联网

RFID干货专栏|32 载波泄漏消除技术

发布时间:2022-05-02 02:02:32 所属栏目:物联网 阅读:

RFID干货专栏概述

经过20多年的努力发展,超高频RFID技术已经成为物联网的核心技术之一,每年的出货量达到了200亿的级别。在这个过程中,中国逐步成为超高频RFID标签产品的主要生产国,在国家对物联网发展的大力支持下,行业应用和整个生态的发展十分迅猛。然而,至今国内还没有一本全面介绍超高频RFID技术的书籍。

为了填补这方面的空缺,甘泉老师花费数年之功,撰写的新书《物联网UHF RFID技术、产品及应用》正式出版发布,本书对UHF RFID最新的技术、产品与市场应用进行了系统性的阐述,干货满满!RFID世界网得到了甘泉老师独家授权,在RFID世界网公众号特设专栏,陆续发布本书内容。

image.png

扫码观看本章节视频讲解

5.2.3 载波泄漏消除技术

载波消除技术(CarrierCancellation,CC)又叫载波抵消技术,也叫自干扰消除技术(Self-Jammer Cancellation,SJC),是提高超高频RFID阅读器灵敏度的关键手段。

01、载波泄漏消除技术的发展历

在5.2.2节的介绍中,多次提到载波泄漏带来的问题,然而在载波消除技术未被发明之前,超高频RFID阅读器主要采用了两种应对方法:一是承受载波泄漏的设计,这类阅读器通常利用高隔离度的环形器来衰减载波泄漏,通过设计无源高线性度的接收前端来承受载波泄漏信号的干扰,但无源前端噪声性能较差,影响灵敏度;另一种方法是利用衰减器减小载波泄漏,通过片内或片外衰减器减少载波泄漏信号,但同时衰减器也同比例减小了有用信号,从而降低了阅读器接收灵敏度。以上两种方法阅读器接收机灵敏度都不高:在0到5dBm载波泄漏时,阅读器接收机灵敏度通常为-70dBm左右,-10dBm级别及更小载波泄漏时,接收机灵敏度才可达到-85dBm,两种模式下灵敏度差异达15dB甚至更高。由此可见较高的载波泄漏正是制约阅读器芯片接收机灵敏度的重要因素。因此,从2007年起,国内外学者开始对载波泄漏消除技术进行研究。

Analog Device公司J.Y.Lee等人于2007年提出了一种具有载波泄漏消除的技术。该技术通过从片上本振信号抽取一路信号作为参考信号源,控制其幅度与相位,利用差分LNA与载波泄漏实时抵消的方法,信噪比有10-12dB的改善,最大可处理-6dBm的载波泄漏信号,在标签距离阅读器90cm处平均标签识别率从0%提高到42.8%。电路采用0.18umCMOS工艺1.8V电源电压实现。

复旦大学闵昊、倪熔华等于2008年提出通过片上本振信号抽取一路信号作为载波泄漏消除信号,控制其幅度与相位,与含有载波泄漏的有用标签信号分别输入差分LNA的两个输入端,实现消除共模载波泄漏信号,保留有用标签信号的目的,从而去除载波影响,最大可处理5dBm载波泄漏,灵敏度可达-80dBm。该电路采用SMIC0.18um CMOS工艺在3.3V电源电压下实现。

美国加利福尼亚大学A.Safarian and A. Shameli等人于2009年5月提出了一种有源载波泄漏抑制前端,设置两条射频路径:线性路径同时放大载波泄漏信号与有用标签信号;非线性路径去除标签信号,保留载波泄漏信号,通过调整其增益,在输出端相减从而消除载波泄漏信号,放大有用的标签信号。该电路采用CMOS 0.18um工艺在1.8V电源电压下实现,信噪比有50dB的改善,最大可处理15dBm的载波泄漏信号。

韩国三星光电子S.C.Jung等人于2010年3月提出了一种采用定向耦合器和阻抗调谐电路的载波泄漏抵消方法,该阻抗调谐电路通过PIN管和变容二极管来实现阻抗调谐,通过调节阻抗调谐电路使得定向耦合器隔离端产生失配并反射信号,该信号和载波泄漏信号一起进入到接收前端,调节从耦合端反射的信号,使其与载波泄漏信号大小相同方向相反以达到消除载波的目的。该方法使得接收机灵敏度有15dB的提升,标签识别距离提高约30%,工作频率860MHz-960MHz。

复旦大学闵昊、熊庭文等2010年2月提出了一种利用分立元件实现的载波泄漏抵消方法,电路由分立的定向耦合器、相移器、衰减器、环形器和功率合成器等器件组成,通过微处理器控制载波参考信号的幅度和相位,通过加法器与载波泄漏信号抵消,在920-925MHz内收发机隔离性能从原来的20dB提高到40dB。

韩国J.Y.Jung等人于2012年1月使用发射的连续载波信号作抵消参考信号源,控制其幅度和相位,利用加法器与载波泄漏信号抵消。该电路通过相移器、定向耦合器、功分器等分立元件实现,使得接收机读模式灵敏度最大提高13dB。