物联网

  • 主页
  • 物联网
  • 机器视觉行业专题研究:以机器视觉之眼,拓制

机器视觉行业专题研究:以机器视觉之眼,拓制

发布时间:2022-04-24 06:03:55 所属栏目:物联网 阅读:

机器视觉行业专题研究:以机器视觉之眼,拓制造升级之路

2022-04-02 14:57 来源: IAS工业自动化展

原标题:机器视觉行业专题研究:以机器视觉之眼,拓制造升级之路

机器视觉行业专题研究:以机器视觉之眼,拓制

前言

以机器视觉之眼,拓制造升级之路

一、 机器视觉具有多维优势,国内处于高速发展初期

1、 属于人工智能分支,相比人眼优势显著

机器视觉属于人工智能范畴,国内外已开始大量应用。机器视觉被称为智能制造的 “智慧之眼”,为智能制造打开了新的“视”界,是实现工业自动化和智能化的必要 手段。根据美国自动成像协会(AIA)的定义,机器视觉(Machine Vision)是一种应 用于工业和非工业领域的硬件和软件组合,它基于捕获的图像为设备执行其功能提 供操作指导。人工智能的应用技术主要包括语音类技术、视觉类技术、自然语言处理 类技术和基础硬件等,其中,机器视觉技术是机器人自主行动的前提,能够实现计算机系统对于外界环境的观察、识别和判断等功能,是人工智能范畴最重要的前沿分支之一。机器视觉技术涉及机械、电子、光学、自动控制、计算机科学、图像处理和 模式识别等诸多领域,在国内外人工智能企业应用技术中占比超过 40%,应用范围 十分广泛。

机器视觉具有识别、测量、定位、检测四大功能,技术实现难度依次增加。机器视觉 的诸多功能基本可归为识别、测量、定位和检测功能四大类,识别是指对目标物的外 形、颜色、字符、条码等特征进行甄别;测量是指对目标的几何尺寸进行测量,把获 取的图像像素信息标定成常用的度量衡单位,然后在图像中精确的计算出目标物的 几何尺寸,高精度以及复杂形态的测量是机器视觉的优势领域;定位是对目标物的 二维或三维位置信息进行获取;检测是对目标物的外观进行监测,包括产品完整检测、外观缺陷检测等。速度和精度是衡量机器视觉识别、测量、定位和检测功能的主 要指标,从技术实现难度来看,四大功能实现的难度依次递增。

机器视觉行业专题研究:以机器视觉之眼,拓制

机器视觉的本质是为机器植入“眼睛”和“大脑”。机器视觉主要分为成像和图像处 理两大部分,光源、镜头、相机和图像采集卡相当于眼睛,连接电缆相当于传入神经, 图像处理系统相当于大脑,控制机构与执行机构相当于手脚等器官。一台机器视觉 设备的工作流程包括视觉成像、自动图像获取、图像预处理、图像定位与分割、图像 识别与检测、视觉伺服与优化控制等环节,被测对象到达指定位置后向图像采集卡 发触发脉冲,图像采集卡接收到脉冲信号后,将触发信号分别传输给相机和光照系 统,由相机进行图像抓取,将光信号转变成为有序的电信号,再将该信号模数转换并 送到图像处理软件,再根据需求对图像进行处理分析、识别,并返回判断结果或者逻辑控制值传递给控制机构执行,完成特定功能工作流程。

机器视觉相比人类视觉多方面优势显著,众多应用场景替代价值较高。机器视觉是 实现设备精密控制、智能化、自动化的有效途径,堪称现代工业和智能制造的机器眼 睛,相比于人类视觉在精确性、速度性、适应性、客观性、重复性、可靠性、效率性、 感光范围和信息集成上具有多方面领先优势。目前机器视觉主要应用于工业自动化 领域,在被检测物品移动速度快、精确性要求高和工作重复性较高的场景下,机器视 觉设备相比人眼工作效率提升明显,能够代替人眼在多种场景下实现识别、定位、测 量、检测等多种功能。

2、 国内处于发展初期,市场规模快速扩张

全球来看,在成像、应用、算力、算法的逐轮驱动下,机器视觉行业进入发展早期。世界范围来看,1969-1980 年期间机器视觉还处于萌芽期,主要由成像技术驱动,还 未形成完整的机器视觉概念;1980-1990 年间机器视觉处于起步期,随着 CCD 图像 传感器、CPU 与 DSP等硬件与图像处理技术的飞速发展,机器视觉逐步由理论研究 走向工业领域的技术应用;1990-2000 年机器视觉行业处于成长波动期,由于成像技 术和算法算力发展还不成熟,系统成本非常高,产业进入成长波动期;2000-2010 年 在应用和算力的双重驱动下,机器视觉行业正式进入发展早期,FPD 平板检测、PCB 检测和汽车行业均提出大量需求;2010-2020 年期间在算法的驱动下,机器视觉行业 迎来加速发展期,在电子、汽车、半导体等领域得到了广泛应用。

机器视觉行业专题研究:以机器视觉之眼,拓制