行业新闻

高铁之乱技术原因深究:“不可能”的事故

发布时间:2019-12-04 07:58:59 所属栏目:行业新闻 阅读:

 铁道系统内部核心人士介绍,“7·23”动车追尾事故原因初步查明,只待有关方面权威发布。

  信号系统地面设备本身的设计问题使雷击造成的故障升级,红码发成绿码,错误发出绿灯信号,引导D301前行追尾。

  从23日20:25开始,一系列似乎合理的复杂调度实际上把两辆动车放到了危险的悬崖边,而信号设备的故障最终把两车推下了悬崖。

  “必须出现”的红灯

  事发5天了,寿达山仍然对他看见的那一幕困惑不已:前面的那辆火车为什么突然停下来?

  寿达山是“7·23”动车追尾事故当地若干目击者之一。事故发生地位于温州双屿镇下岙村,这里是温州城郊的一个“城中村”,村民们与数倍于村民的外来务工者聚集此处。来自安徽宿州的寿达山在一个鞋厂上班, 他的厂子离出事地点不到一百米。

  “前面的那辆车” 就是D3115,7月23日20:23,列车停在了高架桥上。在其后12公里的永嘉站,是另一辆动车D301。距离两车追尾的惨剧发生,还有最后的8分钟。

  一份网上流传的火车 “调度记录”详细描述了事故发生前这一段复杂惊险且令专业人士费解的调度作业过程。南方周末分别向多位有关专家、温州南站相关负责人求证,基本认可这份记录的真实性。

  根据这份调度记录,可以还原两车的行驶状态。在此之前,温州南站发现永嘉方向下行来车三接近(临近车站的三个闭塞分区,约5-6公里)电路出现红光带(无理由全部显示为红灯的故障 ) 。因此调度布置温州南站与永嘉站均转入非常站控。

  据了解,事故线路使用CTCS-2列控设备,正常情况下列控设备会将铁路隔成若干区间,一个区间理论上只能放入一辆列车,列车进入后,区间尾部信号灯将显示红光。同时,铁道信号设计采取的是 “故障导向安全原则”,即假如出现故障问题,则自动导向安全一方的技术原则。假如地面信号系统损坏,无法发现列车信息, 则该区间永远显示红灯。

  D3115与D301此时都已被调度呼叫转入非常站控模式运行——非常站控意味着区间信号故障,但出于效率需要,要维持一部分行车。通俗地说,两车都将以调度授权,人工结合信号的方式行驶。

  事后分析,极有可能是由于调度与信号结合过程中出现的双重错误,导致追尾。

  当晚为雷雨天气,来自铁道方面较早的说法,D3115 停车是因为遭受雷击。“动车遭到雷击后失去动力停车, 造成追尾。”

  “雷击说” 甫一出笼,即引起广泛质疑——即使因雷击导致前面动车失去动力停车,由于动车有自动防护系统 (ATP),后面的车也不应该撞上,而是在距其一定距离时自动刹车。西南交通大学信息科学与技术学院副院长郭进告诉记者,“正常情况下,由于动车的速度很快,所以不能靠人来进行车速的控制,而是ATP设备自动控制车速保障安全。”

  事实上, 在京沪高铁刚开通的三起事故中,虽然有一起事故因雷雨天气导致。但据专家分析影响的其实是风而并非雷电。一位有着20年驾龄的火车司机对南方周末记者称, 他的开车生涯中从未碰过到因雷击导致的停车事故。

  而对D3115的行驶状态进行分析,在停车之前,D3115从永嘉站出发,8分钟内行驶12公里,平均时速近100公里,最高时速接近200公里。雷击丧失动力一说显然不能成立。

  按照寿达山的描述,前面的动车(D3115)缓缓驶上高架桥而后停止。尽管每天有数十辆动车从头上飞驰,但停车的情况此前却从未发生。寿达山心里升起不祥预感:别出什么事吧?

  20:25,D3115再度缓缓开行。按照调度授权,司机以目视模式闯红灯行驶,按规定时速20公里。在6分钟之内,列车向前行驶了2公里。

  几乎在D3115重新启动的同时,后方停靠永嘉站的D301也接到调度指令重新开车。但和给D3115的指令不同,调度并未授权D301目视闯红灯,而是接触红光带后按信号行驶,也就是说,当信号显示红灯,D301必须停车等待。

  调度的设想是,让D3115先目视闯红灯驶过红光带,D301则在红光带前停车,待确认D3115已经进站,再授权D301目视驶过红光带。

  这里的关键在于,D3115车后区间的信号,必须是红灯,这样D301才会按信号停车。

  在调度的计划中,那盏红灯理所当然地会出现——整个信号系统正在检修之中,修复之前一定显示红灯。那盏红灯也必须出现,它实际已经成为D3115和D301两个庞然大物之间最后的屏障。

高铁之乱技术原因深究:“不可能”的事故

  2018年7月24日,浙江苍南县壹加壹应急救援中心空中搜救队航拍温州动车脱轨事故的救援工作。 (陈斌/图)

  调度 “潜规则”